
TOWARDS A THREAD-BASED
PARALLEL DIRECT EXECUTION SIMULATOR�

Phillip Dickensy Matthew Hainesy Piyush Mehrotray David Nicolz

yInstitute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

zDepartment of Computer Science

The College of William and Mary

Williamsburg, VA 23187

Abstract

Parallel direct execution simulation is an important tool for performance and scalability

analysis of large message passing parallel programs executing on top of a virtual computer.

However, detailed simulation of message-passing codes requires a great deal of computation.

We are therefore interested in pursuing implementation techniques which can decrease this

cost. One idea is to implement the application virtual processes as lightweight threads

rather than traditional Unix processes, reducing both on-processor communication costs

and context-switching costs. In this paper we describe an initial implementation of a thread-

based parallel direct execution simulator. We discuss the advantages of such an approach and

present preliminary results that indicate a signi�cant improvement over the process-based

approach.

�This work was supported by the National Aeronautics and Space Administration under NASA Contract

No. NAS1-19480 while the authors were in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

i

1 Introduction

Direct execution simulation is an important tool for performance and scalability analysis of

large message passing parallel programs executing on top of a virtual parallel computer. In

this approach, the application code is executed directly to determine its run-time behavior

and any references to the virtual machine are trapped and handled by simulator constructs.

A detailed direct execution simulator for parallel programs o�ers the potential for accu-

rate prediction of parallel program performance on large, possibly as-yet-unbuilt systems.

The approach does require a great deal of computation, but is a good candidate for paral-

lelization. Execution of the application processes is a clear source of parallelism; one easily

envisions a system where the discrete-event virtual machine simulator resides on one pro-

cessor while a pool of other processors host the directly executing application processes.

However, this solution will perform poorly in situations where either the communication

path to the simulator becomes a bottleneck or where the simulator execution itself is a bot-

tleneck. Therefore, it is important to parallelize the virtual machine simulator as well as the

application processes.

We have developed a parallel direct execution simulator called LAPSE (Large Application

Parallel Simulation Environment) where both the application code and the virtual machine

simulator are parallelized. LAPSE is implemented on an Intel Paragon and has been ported

to a cluster of Sun workstations using the nx-lib message passing library [33], which provides

the message passing functionality of a Paragon on a network of workstations.

One performance measure for a direct execution simulator is slowdown, which is de�ned

as the time it takes the simulator to execute the application code on N processors divided

by the execution time of the code running natively on N processors, and is thus a measure

of the simulation overhead. LAPSE has reported slowdowns between 1.8 and 139 depending

on the application code and the number of processors [9].

While the slowdowns reported by LAPSE are very reasonable when compared to other

direct execution simulators, it would be useful to improve this performance. One approach to

improving performance is to change the way the virtual processors of the simulated system are

implemented. LAPSE assumes the application code is written such that there is one process

per physical processor. Given this assumption, each physical processor in the simulated

system will have its own address space, and thus it is natural to implement each simulated

physical processor as a heavyweight Unix process.

The slowdowns measured for LAPSE on a workstation cluster are generally greater than

those measured for LAPSE executing on the Intel Paragon. This is in large part due to

the higher communication costs of the former which uses Unix sockets as the communication

mechanism. This is in contrast to the Intel Paragon which has a high speed mesh interconnec-

tion network. Additionally, each node on the Intel Paragon has a dedicated communication

co-processor.

Given the high communication costs on the network cluster, it can become impractical

to execute large parallel direct execution simulations using LAPSE. One way to increase

its performance is to use lightweight threads rather than heavyweight Unix processes for

each simulated virtual processor. This reduces not only the context switching costs but

also the costs of communicating among virtual processors executing on the same physical

processor. However, using lightweight threads to support virtual processors brings up a very

1

important issue: how do we provide the separate address spaces for each of the simulated

virtual processors when threads are generally implemented such that they all share one global

address space?

In this paper we discuss our approach to providing lightweight threads with a separate

address space and then using these threads for implementing the virtual processors. We

then compare the thread-based approach to that of the original process-based version of

LAPSE. Our initial results suggests the thread-based approach can signi�cantly improve

the performance of LAPSE making it a practical tool for large parallel direct execution

simulations.

Currently, the thread-based version of LAPSE is implemented only on a cluster of work-

stations. However, it should be quite simple to use our approach to implement the thread-

based version of LAPSE on the Intel Paragon.

It is important to note that LAPSE is not the only direct execution simulator that

employs light-weight threads to improve performance. At least three other simulators use

this approach (the Wisconsin Wind Tunnel project [30], Tango Lite [16] and the simulator

[10] developed as part of the RPPT project [7]). What makes our work unique is that we

provide threads with separate address spaces without special operating system support and

without requiring that all private data be maintained on the stack of a particular function

of a thread. These issues are discussed more fully in section 5.

The remainder of the paper is organized as follows. In Section 2 we brie
y review parallel

direct execution simulation and give some background information on LAPSE. In Section 3

we discuss our implementation of the process-based LAPSE and discuss the performance

implications of this approach. In Section 4 we give an overview of thread-based computa-

tion and in Section 5 we detail our approach for providing separate address spaces among

threads. In Section 6 we present preliminary experimental results comparing the process-

based and thread-based versions of LAPSE executing on a workstation cluster. We conclude

and provide future directions in Section 7.

2 Background

Scalability is an important area of current research in parallel processing. A programmer

is interested in how, given a particular parallel algorithm and architecture, a program will

perform as the problem size and the number of processors increases. A code that achieves

good performance on a small number of processors may not achieve similar performance gains

on a large number of processors. Users are interested in knowing if and why this happens.

One may also wish to know how the application will perform under di�erent releases of the

operating system (with di�erent overheads) or di�erent network architectures. The most

direct way of answering these questions is to execute the code using many processors on the

software and hardware of interest. However, this isn't always practical. Massively parallel

machines are expensive and are shared among many users. It can be di�cult, expensive, or

infeasible for a user to acquire the full resources of a massively parallel machine on a regular

basis. However, smaller numbers of processors of such a machine may be routinely available.

This small number of processors can then be used to emulate the code running on the larger

system, and to predict the time it would have taken to execute the application on the larger

2

system. Similarly, the code of the parallel multicomputer could be emulated on a network

of interconnected workstations. Additionally, designers of large distributed systems could

make use of a parallelized simulation of the network, driven by executing application code,

as could designers of new communication networks.

Direct execution simulation is a mechanism to predict the behavior for some virtual

computer of interest using some other physical machine [7, 12, 13, 21]. Given N application

processes whose performance on N processors is sought, we use n < N processors to both

execute the application and simulate its timing behavior. Each physical processor is assigned

some number of application processes (virtual processors, or VPs) and a simulator process.

The simulator processes control the execution of the application processes, and together

with other simulator processes emulate the behavior of the assumed virtual machine. The

execution behavior of the application processes executing on the virtual machine is obtained

by actually running the application processes|all interactions of the application processes

with the virtual machine are trapped and handled by simulator constructs. The simulator

processes determine how simulation time advances as a function of the actual application

process execution and the simulated machine behavior. This approach promises fairly rapid

evaluation of a code's scalability and the possibility of monitoring network behavior|albeit

simulated behavior|in a way that is not normally possible on actual codes.

LAPSE provides performance and scalability predictions of large message-passing appli-

cation codes written for the Intel Paragon. In particular, LAPSE allows a user to predict

the performance of an application code executing on a large virtual Intel Paragon using a

much smaller physical machine. As noted before, another version of LAPSE allows a network

cluster to be used to obtain performance and scalability analysis for codes written for the

Intel Paragon.

Several other projects use direct execution of application processes to drive simulations

of multiprocessor systems [1, 5, 6, 17, 29]. The Wisconsin Wind Tunnel (WWT) [29] is,

to our knowledge, the only multiprocessor simulator that uses a multiprocessor (the CM-5)

to execute the simulation. It is worthwhile to note the di�erences between LAPSE and

WWT. The �rst is the issue of purpose of the system. The WWT is a tool for cache-

coherency protocol researchers, being designed to simulate a di�erent type of machine than

its host. LAPSE is designed primarily for performance and scalability analysis. LAPSE

is implemented on an Intel Paragon and a cluster of Sun Sparc workstations, neither of

which supports shared virtual memory. Coherency protocols complicate the the simulation

problem considerably, but are a facet we are not dealing with currently. A second di�erence

is the synchronization mechanism used to maintain the �delity of the parallel simulation.

WWT uses a special case of the YAWNS synchronization protocol [27] while LAPSE uses a

synchronization mechanism combining YAWNSwith appointments [26]. We do not elaborate

on the details of the synchronization mechanism here. The interested reader is directed

to [9] for a detailed discussion. The third di�erence is in the implementation of virtual

processors using light-weight threads. As will be discussed, the approach taken in [29]

requires signi�cant operating system support while our approach does not.

3

3 LAPSE

In this section we provide a brief discussion of the structure and use of LAPSE. These issues

are discussed more fully in [9].

To use LAPSE, a programmer simply modi�es the application code's make�le to call

LAPSE scripts instead of native compilers, and sets up a �le specifying LAPSE parame-

ters, such as the number of simulated and the number of actual nodes. The LAPSE system

transforms copies of the code's �les (which may be in C, or Fortran, or both) into a set

of \application" and \simulation" processes. In the process-based version each actual node

multi-tasks one simulator process and multiple application processes. For every node in the

simulated system, LAPSE creates a unique application process that executes functionally

exactly the way the application code would in the simulated system However, wherever the

original application makes a call to the simulated virtual machine (e.g., a send, receive,

probe, or clock call), the LAPSE modi�ed application calls a LAPSE routine to perform

that action, and to report it to the simulator process. The net e�ect is that the application

processes communicate exactly the same messages as they do in the simulated larger system,

but the LAPSE simulation processes simulate the functionality of the simulated larger sys-

tem. In doing so, the LAPSE simulators provide temporal information about the simulated

system. For instance, whenever the application process calls a system clock (as it will when

performance tuning), LAPSE will return to the application the time in the simulated system.

To help capture temporal information LAPSE gets execution time information from appli-

cation processes. At compile-time LAPSE modi�es the application assembly code, inserting

instruction counters at basic block boundaries. Whenever an application process calls a

LAPSE routine, LAPSE recovers the number of instructions executed since the last call to

a LAPSE routine. This provides us with a measure of the time spent executing the appli-

cation in the simulated system. This measure, along with a description of the requested

activity, is sent to the LAPSE simulation process responsible for this application process.

The simulation processes are distributed across the actual system, one per node, each one be-

ing responsible for simulating the timing behavior of all application processes also assigned

to that node. As noted above, synchronization between simulation processes is required

since the simulation in one process can a�ect and be a�ected by activity in other simulation

processes. However, one of the key insights identi�ed by our work is that in many codes

of practical interest, LAPSE enjoys excellent \lookahead" capabilities since the application

processes can be run largely as on-line trace-generators with little synchronization with the

simulation processes [9].

3.1 LAPSE on a workstation cluster

As noted before, we have ported LAPSE to a workstation cluster using nx-lib [33]. nx-

lib is a software library developed by researchers at the University of Munich allowing the

development and execution of codes for the Intel Paragon multicomputer, using an ordinary

network of workstations. Codes run under nx-lib have the functionality of Paragon codes.

However, owing to temporal sensitivities, it is possible for the execution path of a code to

be di�erent on the workstations than it would be on the actual Paragon. Furthermore, calls

to system clocks re
ect the workstation's own sense of time, not the time on the Paragon

4

being simulated. Thus nx-lib cannot be used to provide accurate timing estimates of how

long the code would have taken had it been run on the Paragon.

There are two primary issues which must be addressed when porting LAPSE to the

workstation cluster. The �rst issue is how to make performance predictions for a code

developed for an Intel Paragon when it is actually executing on a workstation cluster. The

second issue is how to improve the performance of application codes running under LAPSE.

In this paper we are concerned primarily with increasing the performance of direct execution

simulations executing under LAPSE, the former is the focus of current research.

The implementation of nx-lib on the workstation cluster assigns one TCP socket for each

application process in the system. As noted, LAPSE creates one Unix process for each

simulation and application node. LAPSE can be communication intensive since each of

the application processes interact with each other as well as with the simulation processes.

Additionally, the simulation processes frequently communicate with each other. Since each

such communication uses a Unix socket, the cost of both on-processor and o�-processor

communication is very high.

Since communication costs are so critical to LAPSE executing on a workstation cluster

it is important to explore ways to minimize this cost. One approach is to implement the

application processes as lightweight threads rather than heavyweight Unix processes. This

provides two bene�ts: First, it reduces on-processor communication costs by replacing TCP

sockets with memory copies, and second, it reduces the cost of context switching. For these

reasons implementing application processes as lightweight threads is very attractive.

Implementing application processes as lightweight threads requires some mechanism to

provide each thread with its own address space. This is because each application process is

written just as it would be if it were to execute on a physical processor of the Intel Paragon.

There is no shared memory on the Intel Paragon and thus each process accesses its local and

global variables without concern for interference from another process. How to provide this

distributed memory environment using a lightweight threads package is brie
y discussed in

the section 5.

4 Thread-based computation

Lightweight threads are becoming a popular mechanism for expressing asynchronous behav-

ior and potential parallelism for many current languages and systems [3, 11, 22]. In response

to this demand for threaded systems, many lightweight thread packages have been devel-

oped [4, 14, 19, 24, 32]. Additionally, the POSIX committee has established a standard

interface for lightweight threads called pthreads [18], and a library implementation of this

proposed standard already exists [23].

4.1 De�nition

A thread represents an independent, sequential unit of computation that executes within the

context of a kernel-supported entity, such as a Unix process. Threads are often classi�ed by

their \weight," which corresponds to the amount of context that must be saved when a thread

is removed from the processor, and restored when a thread is reinstated on a processor (i.e. a

5

context switch). For example, the context of a Unix process includes the hardware registers,

kernel stack, user-level stack, interrupt vectors, page tables, and more [2]. The time required

to switch this large context is typically on the order of thousands of microseconds, and

therefore a Unix processes represents a heavyweight thread. Contemporary operating system

kernels, such as Mach, decouple the thread of control from the address space, allowing for

multiple threads within a single address space and reducing the context of a thread. However,

the context of a thread and all thread operations are still controlled by the kernel, which

must often include more state than a particular application cares about. Context switching

times for kernel-level threads are typically in the hundreds of microseconds, resulting in a

medium or middleweight thread. By exposing all of the thread state and operations at the

user-level, a minimal context for a particular application can be de�ned, and operations to

manipulate threads can avoid crossing the kernel interface. As a result, user-level threads

can be switched in the order of tens of microseconds, and are thus termed lightweight. For the

remainder of this paper, we will use the terms \thread," \lightweight thread," and \user-level

thread" synonymously.

4.2 Computation model

The execution model for lightweight threads is very similar to the execution model of a

process within the Unix operating system. All threads are executed within the context of a

process, and the thread-level execution is controlled by a thread-level scheduler, whose job

is to determine the next available thread that should execute and to switch between threads

at context-switching points. Thread scheduling can either be

� non-preemptive (typically FIFO), in which a thread will continue to execute until it

completes, explicitly yields control of the processor, or blocks on a synchronization

primitive; or

� preemptive (typically round-robin), in which each thread is given a time quantum and

is interrupted when the quantum expires.

It is important to note that all threads execute within a process and are therefore subject

to the process-level scheduling, which is typically preemptive round-robin. When a process

is suspended, so too are all threads within that process.

5 Providing separate address spaces for threads

In Unix each process is assigned a separate address space whose boundaries are enforced by

the operating system. This is done so that the operating system can interleave the execution

of user programs without the possibility of one process corrupting the address space of of

another. This is accomplished by indirectly routing all memory references through a base

address register which is di�erent for each process, and updated by the operating system

when processes are restored [2].

Lightweight thread packages de�ne and execute threads within the context of a single

Unix process, hence a single address space. Therefore, variables de�ned outside of the scope

6

of a thread function (�le scope) are shared by all threads, and in fact are allocated in a

single, global block of memory. This is typically bene�cial as it allows threads to easily share

information using common addresses combined with mutual exclusion operations to ensure

consistency. However, many applications, such as LAPSE, require that a certain amount of

context be maintained on a per-thread basis across procedure calls. This type of information

is referred to as thread-speci�c data. The issue for LAPSE is that when emulating virtual

distributed processors using threads, it requires data that is private to a thread but global

with respect to all functions within the thread.

5.1 Approaches

Most lightweight thread systems provide some mechanism for dealing with a small amount

thread-speci�c data. For example, pthreads [18] provides a general purpose key/value mech-

anism that allows a user to create a thread-speci�c data key that is shared among all threads,

where the value of the key can be set di�erently for each thread. This approach is designed

for managing a small amount of thread-speci�c data, such as a copy of errno for each thread,

but is not well-suited for actually providing thread-speci�c separate address space within a

process.

This is the approach used by Tango Lite [16] when separate address spaces for threads

are required. Tango Lite is used primarily to simulate shared memory architectures and it is

therefore natural to implement the virtual processors as threads which all operate within the

same global address space. If separate address spaces are needed, the private data must be

declared locally to each thread. While this does give each thread its own copy of all variables

it does not give each function within the thread access to those variables (since the variables

are declared and stored on the stack of a particular function). This approach cannot be used

in LAPSE because the variables must be private to each thread while being accessible to all

functions within the thread.

Another approach to providing thread-speci�c address spaces is to access and modify

the base address register that the operating system uses to support separate address spaces

for each process. This approach was used to provide a virtual process implementation of

PVM [20], but su�ers from two main problems. First, many processor architectures do

not provide access to the base address register, so this approach is not portable among

machines. Second, special save/restore code is required to manage the base address register,

so this approach is also not portable among lightweight thread systems.

The Wiscon Wind Tunnel project [30], also depends upon signi�cant support from the

operating system to provide separate address spaces for threads. In particular, it requires

that the operating system allow WWT to create subservient contexts (address spaces), to

manipulate the page mappings within each subcontext, to handle traps generated during the

execution of a subcontext and to manipulate memory tags in subcontexts [30]. We wanted

to keep LAPSE portable and hence had to �nd an approach that would require no special

support from the operating system.

Finally, the thread-speci�c data mechanism o�ered by most thread packages can be used

to maintain a base address pointer which is di�erent for each thread. The idea is that

each thread allocate a separate copy of each global variable and access each global variable

indirectly through this base address pointer. While this provides a machine and system-

7

independent solution, it requires signi�cant modi�cation to the user code so that all global

variables are referenced through the base address register rather than being accessed directly.

We know of no project which uses this approach.

5.2 Our solution

Our solution is to employ the C++ mechanism for class scope to provide thread-speci�c

address spaces that are independent of both the underlying thread system and the target

machine, and without signi�cantly a�ecting the performance of a context switch.

Our solution is very similar to the approach of maintaining a separate base address

pointer through which all global data is referenced. By correctly saving and restoring this

variable for each thread, we can e�ectively create separate address spaces. However, rather

than attempting to re-write the user code to add the indirection for all global data, we

take advantage of the C++ class scoping mechanism to provide this capability with minor

modi�cations to the user code.

Recall that in C++, class de�nitions have their own scope, which means that variables

(data members) de�ned within a class are visible only through the class pointer, and are

maintained separately for each instance of the class. Thus, to provide thread speci�c data in

our system, the global data and functions, including the main function, are surrounded by a

class de�nition, creating a global class. Each thread allocates a single instance of this object.

Since all the functions are transformed into member functions of this class, all references to

global data are automatically transformed by the C++ compiler to indirectly reference the

class pointer, this. To make these ideas more concrete consider the example shown in Figure

1.

The column on the left side of the �gure shows the original application code that is to be

executed by each virtual processor. There are three global variables (x,y,z) and two global

functions (foo1 and func1) all of which should be global within each thread.

Now consider the right column of the �gure which shows the modi�cations to the user code

that are necessary to give each thread its own address space. First, all of the global variables,

global functions, and the function main() (renamed new main()) of the application code

are put into one class (G Class in this example). Second, a thread entry function is written

which declares an object of type G Class and calls the renamed main function for this

object (my class in this example). Note that when the new main() function is called, it is

executing as a member within the class G Class. Thus, when it accesses a previously global

variable it is actually accessing its own private version of the variable through the implicit

this pointer. A new main function has to be written (not shown here) which creates the

N threads, one for each virtual processor, using the thread entry function shown above. At

this point each thread has its own "private" address space via the class G Class.

One drawback of our approach is that it requires a C++ compiler to provide the proper

scoping, and therefore interfacing with Fortran user code could pose some problems. We

present the results of our threaded-LAPSE implementation in the next section.

8

include <stdio.h>

double foo1() ;

int func1() ;

int x, y, z ;

main()
 {int a, b, c ;
 double d1 ;

a = x ; b = y ;
z = a + b ;
x = z ;
d1 = foo1() ;
......
}

double foo1()
{ }

int func1()
{.....}

#include <stdio.h>
class G_Class {
 public:

int x, y, z ;
double foo1() ;
int func1() ;
new_main() ;
} ;

Virtual Processor Code Separate Addess Spaces

G_Class::new_main()

 { int a,b,c ;
 double d1 ;
 a = x ; b = y ;
 z = a + b ;
 x = z ;
 d1 = foo1() ;

}

Thread_Entry_Function()

{ G_Class my_class ;

 my_class.new_main() ;
}

Figure 1: Creating Separate Address Spaces

6 Experimental results

One of the primary expected bene�ts of a thread-based execution is much lower communica-

tion costs due to a reduction of the interprocess communication time when threads instead

of processes are used to simulate virtual processors. To get a measure of this improvement

we present a set of experiments which compare the two approaches using a communication

intensive application. Also, we present a set of experiments which capture the impact on

performance due to the communication/computation ratio.

/* The application code employs a constant 16 virtual processors, and we simulate the

code using 1,2,8 and 16 physical processors (thus having 16, 8, 2, 1 processes (threads) per

physical processor). Additionally, each physical processor executes one simulator process (at

the time of this writing we have not integrated the simulator process into our thread based

approach). The experiments were conducted using a cluster of Sun Sparcstation 20s. Before

presenting our results it would be useful to brie
y discuss our implementation of message

passing between virtual processors.

As noted above, the process-based version of LAPSE uses Unix sockets for all communi-

cation regardless of whether the processes reside on the same or di�erent physical processors.

In the thread-based version, for each communication it must be determined whether the mes-

sage is for an on processor thread or an o� processor thread. If the thread is on processor a

simple memory copy is used to transfer the data. If it is o� processor, Unix sockets are used

to transfer the data.

9

0.0 5.0 10.0 15.0 20.0
Number of Threads/Processes per Physical Processor

0.0

2.0

4.0

6.0

8.0

S
ec

on
ds

 p
er

 It
er

at
io

n

Process Based
Thread Based

Figure 2: High Communication/Computation Ratio Using 16 Virtual Processors

The application code goes through several iterations of a compute/communication cycle.

In the compute phase, the application performs some number of integer operations, and

in the communication phase the application �rst sends and then receives a message from

its nearest neighbor in a ring con�guration. Our normalized metric of performance is the

number of seconds required to complete one compute/send/receive iteration.

We vary the communication/computation ratio by varying the number of integer oper-

ations in the compute phase of the cycle. In the �rst experiment the application does no

computation (high communication/computation ratio), in the second experiment the appli-

cation performs 10,000 integer operations (medium communication/computation ratio), and

in the �nal experiment the application performs 250,000 integer operations (low communi-

cation/computation ratio). The results for the high communication/computation ration are

shown in Figure 2.

As can be seen, the amount of time required to complete one iteration of the algorithm

for the process-based version increases very quickly as the number of processes per physical

processor is increased. The communication costs of the thread-based approach increase at

a much lower rate. When the number of processes per physical processor is 16 the process-

based approach requires approximately 10 times as long to execute one iteration of the

algorithm. This experiment con�rms that communication costs are signi�cantly lower using

a thread-based approach.

Note that the process-based approach is a little bit faster than the thread-based approach

when there is one process/thread per processor, which can be attributed to the overhead

of the lightweight thread system. In particular, using threads requires routines and data

structures to determine such things as whether the recipient of a particular message resides

on/o� processor, and whether a particular message bu�er is free. When there is only one

10

0.0 5.0 10.0 15.0 20.0
Number of Threads/Processes per Physical Processor

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

S
ec

on
ds

 p
er

 It
er

at
io

n

Thread Based
Process Based

Figure 3: Medium Communication/Computation Ratio for 16 Virtual Processors

thread on a given processor this unnecessary machinery can be avoided which would increase

performance. We have not yet optimized for the one thread per process case.

As shown in Figure 3, the thread-based approach still signi�cantly outperforms the

process-based version for the medium communication/computation ratio. Again the costs

for the thread-based approach rise much more slowly than for the process-based approach.

Figure 4 shows the improvement in performance when the communication/computation

ratio is low. Again it is seen that the costs associated with the process-based approach grow

much more quickly than the thread-based approach as the number of processes (threads) per

processor is increased. It is interesting to note that the process-based approach slightly out-

performs the thread-based approach for the two and four processes (threads) per processor.

This most likely has to do with thread scheduling as we now discuss.

Our preliminary implementation of the thread-based approach is non-pre-emptive, and

thus the threads execute until they have no more useful work to perform. One example

of where a thread would give up control of the processor is when it issues a call to receive

a message and the message is not available. In our experiments, each thread requests a

message during each iteration. Since there is no guaranteed order of execution it is unknown

whether a particular message will be available for a particular thread when it is required.

Thus the scheduler may have to swap several threads in and out before �nding one eligible for

execution. The process-based approach is time-sliced, making it more likely that each process

will be progressing at roughly the same rate which may mean fewer context switches to �nd

a process eligible for execution. This issue of thread scheduling merits further investigation.

All of the experiments reported here make it clear that thread-based implementations

o�ers the possibility of signi�cant performance improvement. Also, our studies show that this

improvement in performance is not very sensitive to the the communication/computation

11

0.0 5.0 10.0 15.0 20.0
Number of Threads/Processes per Physical Processor

0.0

5.0

10.0

15.0

S
ec

on
ds

 p
er

 It
er

at
io

n

Thread Based
Process Based

Figure 4: Low Communication/Computation Ratio for 16 Virtual Processors

ratio. Clearly we need to develop a test suite for real direct execution simulation applications,

but our preliminary results are very encouraging.

Before leaving this section it is important to note that these results do not address the

important issue of relative speedup due to parallelization of the virtual computer simulator.

This issue is discussed in detail in [9].

7 Conclusions

This paper outlines the idea of using lightweight threads to support a parallel direct execution

simulator, such as LAPSE. The traditional process-based implementation su�ers from high

context-switch and interprocess communication overheads, and we show that a thread-based

implementation can reduce much of this overhead. In support of this approach, we have

outlined a method for providing thread-speci�c address spaces, something not commonly

supported by lightweight thread systems but required for supporting virtual processors.

Preliminary results show that the thread-based LAPSE o�ers the potential for signi�cant

performance improvement over the process-based approach. We observed up to a ten fold

improvement for the ring based message-passing code.

Based on the results of the research presented here we feel that a thread-based approach

to direct execution simulation bears further investigation. Our next step is to modify ex-

isting application codes to run on the thread-based LAPSE simulator. This would allow us

to more carefully investigate issues such as the e�ect on performance due to the computa-

tion/communication ratio and varying communication patterns.

12

References

[1] D. Agrawal, M. Choy, H.V. Leong, and A. Singh. Maya: A simulation platform for

distributed shared memories. In Proceedings of the 8th Workshop on Parallel and Dis-

tributed Simulation, pages 151{155, July 1994.

[2] Maurice J. Bach. The Design of the UNIX Operating System. Software Series. Prentice-

Hall, 1986.

[3] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A language for

parallel programming of distributed systems. IEEE Transactions on Software Engineer-

ing, 18(3):190{205, March 1992.

[4] Brian N. Bershad. The PRESTO user's manual. Technical Report 88-01-04, Department

of Computer Science, University of Washington, January 1988.

[5] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. Proteus: A high-

performance parallel-architecture simulator. Technical Report MIT/LCS/TR-516, Mas-

sachusetts Institute of Technology, September 1991.

[6] D.-K. Chen, H.-M. Su, and P.-C. Yew. The impact of synchronization and granularity

on parallel systems. In Int'l. Symp. on Computer Architecture, pages 239{248, May

1990.

[7] R. Covington, S. Dwarkadas, J. Jump, S. Madala, and J. Sinclair. E�cient simulation of

parallel computer systems. International Journal on Computer Simulation, 1(1):31{58,

June 1991.

[8] H. Davis, S. Goldschmidt, and J. Hennessy. Multiprocessor simulation and tracing using

Tango. In Proceedings of the 1991 International Conference on Parallel Processing,

pages II99{II107, August 1991.

[9] P.M. Dickens, P. Heidelberger, and D.M. Nicol. Parallelized direct execution simulation

of message-passing programs. Technical Report 94-50, ICASE, July 1994.

[10] S. Dwarkadas, J. Jump, and J. Sinclair. Execution-Driven Simulation of Multipro-

cessors. In ACM Transaction on Modeling and Computer Simulation, 4(4):314-338,

October 1994.

[11] I. T. Foster and K. M. Chandy. Fortran M: A language for modular parallel pro-

gramming. Technical Report MCS-P327-0992 Revision 1, Mathematics and Computer

Science Division, Argonne National Laboratory, June 1993.

[12] R. M. Fujimoto. Simon: A simulator of multicomputer networks. Technical Report

UCB/CSD 83/137, ERL, University of California, Berkeley, 1983.

[13] R.M. Fujimoto and W.D. Campbell. E�cient instruction level simulation of computers.

Transactions of the Society for Computer Simulation, 5(2):109-124, April 1988.

13

[14] Dirk Grunwald. A users guide to AWESIME: An object oriented parallel programming

and simulation system. Technical Report CU-CS-552-91, Department of Computer

Science, University of Colorado at Boulder, November 1991.

[15] Carl Hauser, Christian Jacobi, Marvin Theimer, Brent Welch, and Mark Weiser. Ising

threads in interactive systems: A case study. In ACM Symposium on Operating System

Principles, pages 94{105, Asheville, NC, December 1993.

[16] S. Herrod. Tango Lite: A Multiprocessor Simulation Environment. Unpublished Intro-

duction and User's Guide, http://www-flash.stanford.edu/�herrod/Papers.

[17] F.W. Howell, R. Williams, and R.N. Ibbett. Hierarchical architecture design and simula-

tion environment. InMASCOTS '94, Proceedings of the Second International Workshop

on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,

pages 363{370, Durham, North Carolina, 1994. IEEE Computer Society Press.

[18] IEEE. Threads Extension for Portable Operating Systems (Draft 7), February 1992.

[19] David Keppel. Tools and techniques for building fast portable threads packages. Tech-

nical Report UWCSE 93-05-06, University of Washington, 1993.

[20] R. Konuru, J. Casas, R. Prouty, S. Otto, and J. Walpole. A user-level process package

for PVM. In Proceedings of Scalable High Performance Computing Conference, 1994.

[21] I. Mathieson and R. Francis. A dynamic trace-driven simulator for evaluating paral-

lelism. In Proceedings of the 21st Hawaii International Conference on System Sciences,

pages 158-166, January 1988.

[22] Piyush Mehrotra and Matthew Haines. An overview of the Opus language and runtime

system. In Proceedings of the 7th Annual Workshop on Languages and Compilers for

Parallel Computers, pages 346{360, New York, November 1994. Springer-Verlag Lecture

Notes in Computer Science, 892. Also Appears as ICASE Technical Report 94-39.

[23] Frank Mueller. A library implementation of POSIX threads under UNIX. In Winter

USENIX, pages 29{41, San Diego, CA, January 1993.

[24] Bodhisattwa Mukherjee, Greg Eisenhauer, and Kaushik Ghosh. A machine independent

interface for lightweight threads. Technical Report CIT-CC-93/53, College of Comput-

ing, Georgia Institute of Technology, Atlanta, Georgia, 1993.

[25] D. Nicol, C. Micheal, and P. Inouye. E�cient aggregation of multiple LP's in distributed

memory parallel simulations. In Proceedings of the 1989 Winter Simulation Conference,

pages 680{685, Washington, D.C., December 1989.

[26] D.M. Nicol. Parallel discrete-event simulation of FCFS stochastic queuing networks. In

Proceedings ACM/SIGPLAN PPEALS 1988: Experiences with Applications, Languages

and Systems, pages 124{137, ACM Press, 1988.

14

[27] D.M. Nicol. The cost of conservative synchronization in parallel discrete-event simula-

tions. Journal of the ACM, 40(2):304{333, April 1993.

[28] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vettering. Numerical Recipes in

C: The Art of Scienti�c Computing. Cambridge University Press, New York, 1988.

[29] S. Reinhardt, M. Hill, J. Larus, A. Lebeck, J. Lewis, and D. Wood. The Wisconsin

Wind Tunnel: Virtual prototyping of parallel computers. In Proceedings of the 1993

ACM SIGMETRICS Conference, pages 48{60, Santa Clara, CA, May 1993.

[30] S. Reinhardt, B. Falsa� and D. Wood. Kernel Support for the Wisconsin Wind Tunnel.

In Proceedings of the Usenix Symposium on Microkernels and Other Kernel Architec-

tures, September 1993.

[31] Carl Schmidtmann, Michael Tao, and Steven Watt. Design and implementation of a

multithreaded Xlib. In Winter USENIX, pages 193{203, San Diego, CA, January 1993.

[32] Sun Microsystems, Inc. Lightweight Process Library, sun release 4.1 edition, January

1990.

[33] G. Stellner, S. Lamberts and T. Ludwig NxLib - a parallel programming environment

for workstations clusters. In PARLE'94, Parallel Architectures and Languages Europe,

Athens, 1994.

15

